Osteoclast formation and differentiation: an overview.
نویسندگان
چکیده
Osteoclasts are multinucleated cells of hematopoietic origin which are unique in their ability to resorb bone. Osteoclasts are generated from myeloid progenitors through a progression that involves the fusion of mononuclear precursor cells. The identification of RANK-RANKL signaling as the main signal regulating osteoclast differentiation was a major breakthrough in the bone biology field. In addition remarkable discoveries have been made to broaden the knowledge of the molecular mechanisms of osteoclast formation and differentiation. Despite the vital requirement of osteoclasts in bone modeling and remodeling, bone-related conditions like osteoporosis, Paget's disease and rheumatoid arthritis where accelerated bone resorption takes place pose a major socioeconomic burden to the society. Hence, a better understanding of the pathways leading to osteoclast differentiation is vital in successfully managing such diseases. This is an attempt to give a birds-eye-view of the players in osteoclast formation and differentiation in a brief and concise manner.
منابع مشابه
Arachidonic Acid and Docosahexaenoic Acid Suppress Osteoclast Formation and Activity in Human CD14+ Monocytes, In vitro
An unbalanced diet can have adverse effects on health. Long chain polyunsaturated fatty acids (LCPUFAs) have been the focus of research owing to their necessity of inclusion in a healthy diet. However, the effects of LCPUFAs on human osteoclast formation and function have not been explored before. A human CD14+ monocyte differentiation model was used to elucidate the effects of an ω-3 LCPUFA, d...
متن کاملAccelerated Lactate Dehydrogenase Activity Potentiates Osteoclastogenesis via NFATc1 Signaling
Osteoclasts seem to be metabolic active during their differentiation and bone-resorptive activation. However, the functional role of lactate dehydrogenase (LDH), a tetrameric enzyme consisting of an A and/or B subunit that catalyzes interconversion of pyruvate to lactate, in RANKL-induced osteoclast differentiation is not known. In this study, RANKL treatment induced gradual gene expression and...
متن کاملMolecular Actions of Ovarian Cancer G Protein-Coupled Receptor 1 Caused by Extracellular Acidification in Bone
Extracellular acidification occurs under physiologic and pathologic conditions, such as exercise, ischemia, and inflammation. It has been shown that acidosis has various adverse effects on bone. In recent years there has been increasing evidence which indicates that ovarian cancer G protein-coupled receptor 1 (OGR1) is a pH-sensing receptor and mediates a variety of extracellular acidification-...
متن کاملMicroRNA-338-3p inhibits glucocorticoid-induced osteoclast formation through RANKL targeting.
The differentiation deficiencies of osteoclast precursors (pre-OCs) may contribute to osteoporosis. Research on osteoporosis has recently focused on microRNAs (miRNAs) that play crucial roles in pre-OC differentiation. In the current study, we aimed to analyze the expression and function of the glucocorticoid (GC)-associated miRNA-338-3p (miR-338-3p) in osteoclast formation. We found that dexam...
متن کاملRIP140 in monocytes/macrophages regulates osteoclast differentiation and bone homeostasis.
Osteolytic bone diseases, such as osteoporosis, are characterized by diminished bone quality and increased fracture risk. The therapeutic challenge remains to maintain bone homeostasis with a balance between osteoclast-mediated resorption and osteoblast-mediated formation. Osteoclasts are formed by the fusion of monocyte/macrophage-derived precursors. Here we report, to our knowledge for the fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of medical and dental sciences
دوره 59 3 شماره
صفحات -
تاریخ انتشار 2012